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Abstract Red emitting dyes are of interest in various techno-
logical applications. Coumarins, though being an important
class of fluorescent molecules, those with red emission, have
been rarely studied theoretically. The structural and electronic
aspects of three novel red emitting coumarins were studied
using DFT and TD-DFT methods. The functionals employed
were the hybrid functionals B3LYP, CAM-B3LYP, PBE0 and
the highly parameterized empirical functional M06. The ge-
ometry at ground state reveals the electron donor N,N-
diethylamino group is coplanar with the chromophoric system
and the nitrile group induces a red shift to the absorption and
emission. The electronic energies and dipole moments were
solvent dependent. The basis sets and functionals were
benchmarked for their performance with these molecules.
B3LYP has been proved to be more efficient in computations
whereas the basis sets do not have noticeable effect on the
electronic properties. However, adding a polarization function
to the basis set has improved the calculation of vertical

excitation. The B3LYP functional gives maximum absolute
deviation of 0.20 eV in calculating the vertical excitations
and 0.18 eV for emission.
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Introduction

The red emitting dyes are of interest in the area of OLED
[1–4], protein tracking [5], multicolor imaging [6], far-field
optical nanoscopy [7, 8]. The red emitting dyes are important
in OLEDs to complement their blue [9, 10] and green [11, 12]
dye counterparts in fabrication of displays. In biological ap-
plications, red emitting dyes stand high and apart due to their
ability to produce emission signals discrete from the autoflu-
orescence [13–15] of biomolecules (195–600 nm), low energy
excitation and emission in biological window [16, 17]. The
optics used for the red region is simpler, as the scattering effect
for the red region is minimal and the sources such as dye lasers
in the red region are readily available [18]. In this way, the red
emitting probes provide the bio-analyst with a less noisy,
higher penetrating and simpler technique to study the various
biological phenomena.

There are various classes of dyes available for the purpose
of emission in red region, such as cyanines [19–23], xanthenes
[24–27], BODIPY [28–30], dicyanovinyls [31–33]. Design
and synthesis of red emitting dyes are gaining interest in re-
cent years [34–38]. The molecules of coumarin class are
known to be highly fluorescent [39] with moderate to good
quantum yields [40] and are used in biological applications
such as fluorescent markers for proteins [41], cellular imaging
[42] and lasers [43]. Coumarin dyes are known to have blue to
green fluorescence and there are successful attempts reported
in the literature to shift the excitation and emission wavelength
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of coumarin dyes towards red region [44, 45]. For the red
absorption/emission in coumarin core, the positions of donors
and acceptors are very important and are illustrated in Fig. 1.
The positions 5 and 7 when substituted with a donor moiety
such as –OH, −NEt2, −NH2 and -OCH3 and the positions 3
and 4 substituted with acceptors like –CN, −COOEt and
benzazolyl group, the coumarin fluorophore experiences a
red shifted absorption and hence red shifted emission.
Increasing the rigidity of the donor [46] and acceptor [47]
groups also adds to the red shift of the coumarin molecules.
The substitution at 4-position by –CN group (an acceptor)
induces a red shift in the emission of coumarins [44].
Investigations in red absorbing and red emitting coumarins
constitute a fertile area of industrial research [48–52].

The donor-acceptor relationships pertaining to the
photophysical behavior of the coumarinmolecules can bewell
understood using the quantum chemical computations. A sig-
nificant work in understanding the structural and
photophysical properties was done by Cave et al. [53]. The
Pople’s split valence triple zeta basis sets with added polari-
zation function 6-311G(d,p) was employed in conjunction
with the popular hybrid B3LYP (Becke3-Lee-Yang-Parr hy-
brid functional), MPW1PW91(Perdew-Wang exchange as
modified by Adamo and Barone combined with PW91 corre-
lation) and PBE0 functionals to estimate the dipole moments
at ground and excited states for coumarin 151 and 120. The
results were compared with the ZINDO, CIS, CASSCF and
CASPT2 methods. The system water-coumarin 151 complex
was also studied with above methods and found to be in good

agreement with the experimental results. UV-visible spectrum
and IR in solution phase was estimated for coumarin mole-
cules with the SCRF (Self-Consistent Reaction Field) formal-
ism [54]. The time-dependent density functional theory (TD-
DFT) calculations with the hybrid functionals BLYP, B3LYP,
MPW1PW91, PBE and PBE0 were worked out by Cave et al.
[55]. The basis sets used were the split valence 6-31G(d), 6-
31+G(d), 6-311G(d,p) and 6-311+G(d,p) and no significant
difference was found in the properties such as excitation en-
ergies. The Polarizable Continuum Model (PCM) developed
by Tomasi et al. [56] and Onsager Polarizable Point Dipole
Model [57] was used to study the solvation effects of these
molecules.

Fig. 1 Positions of donors and acceptors on a coumarin core important
for red absorption/emission
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Fig. 2 Red emitting coumarins
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Fig. 3 Energy computed using 6-311++G(2d,p) basis set and various
functionals and HF method for RC1 in CH3CN

Table 1 Solvent stabilization energies (kcal/mol) of RC1, RC2 and
RC3 in various solvents calculated with HF and various functionals and
6-311++G(2d,p) basis set

RC1

CH3CN CHCl3 DMSO Gas

HF 17.3 12.9 17.5 0.0

B3LYP 16.5 11.7 16.7 0.0

CAM-B3LYP 16.3 11.6 16.5 0.0

PBE0 16.3 11.5 16.5 0.0

M06 16.2 11.5 16.4 0.0

RC2

HF 28.5 Not Available 28.9 0.0

B3LYP 25.1 25.4 0.0

CAM-B3LYP 25.4 25.8 0.0

PBE0 24.9 25.2 0.0

M06 21.9 22.6 0.0

RC3

HF 29.2 Not Available 29.6 0.0

B3LYP 26.6 26.9 0.0

CAM-B3LYP 26.5 26.9 0.0

PBE0 25.9 26.3 0.0

M06 25.6 26.0 0.0

All the values expressed in kcal/mol
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An a priori approach of assessing the desired photophysical
properties prior to synthesis can save a lot of efforts and min-
imize the use of environmentally hazardous chemicals. The
computational methods are to be standardized and tried before
they can be used for such applications. This can make predic-
tions closer to the observed photophysical properties. Towards
this end, in this paper a complete focus has been laid to ratio-
nalise the practical observations with the help of ab initio
methods. There are many such reports investigating the
photophysics of the coumarins with the help of DFT
[58–64]. The coumarin molecules taken up for the studies
were relatively smaller (30–40 atoms). To have a better meth-
od to predict the photophysical properties of real world func-
tional molecules, there is a need to work on the analogous
molecules.

The molecules studied (Fig. 2) were synthesized by Huang
and co-workers and their photo-physical properties in various
solvents are known [45]. The molecules were reported to
show the excitation and emissions in the range of 570–

721 nm and they are sensitive to the solvent environment.
These molecules represent a class of red emitting coumarins
with a rigidized acceptor moiety. The study of the properties
of these molecules can reinforce the base of computational
studies of more complicated red emitting coumarins falling
in this class.

In this paper, we have attempted to give a theoretical ex-
planation to the photophysical behaviour of the above dyes in
solvent environment using DFT calculations. The observed
substituent effect as well as solvent effect on absorption wave-
length were correlated with the theoretical calculations. This
will help in understanding the suitability of the computational
methods to interpret the photophysical properties of the red
emitting coumarins.

Methods/Computational Strategy

DFT method [65] for the ground state optimisations and TD-
DFT [66] for the vertical excitation computations were used.
The functionals used were B3LYP (Becke3-Lee-Yang-Parr
hybrid functional) [67, 68], CAM-B3LYP [69], PBE0 [70]
which are hybrid functionals. The highly parameterized em-
pirical M0X series which account for the non-covalent inter-
actions as well as Bmedium range^ electron correlation, M06
[71] was also used. The use of M06 in computations to study
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Fig. 4 Energy (in Hartree) ofRC1, RC2 and RC3 in CH3CN using HF/
6-311++G(2d,p) and B3LYP/6-311++G(2d,p) methods
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Fig. 5 Energies (Hartree) calculated for RC2 using B3LYP functional
and various basis set
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Fig. 6 Dipole moments in Debye for RC1, RC2 and RC3 in various
solvents at B3LYP/6-311++G(2d,p) level

Table 2 Angle of
pyramidalization in
DMSO for RC1, RC2
and RC3 in HF and
various functionals and
6-311++G(2d,p)

RC1 RC2 RC3

HF 0.3 0.3 0.2

B3LYP 0.8 0.3 0.2

CAM-B3LYP 1.9 0.1 0.2

PBE0 2.03 0.0 0.2

M06 2.0 0.2 0.2

Angles in °
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the photophysical properties of coumarin is not documented in
the literature. The results of the HF method were also com-
pared with the DFT functionals. The solvents considered were
chloroform (CHCl3), dimethyl sulfoxide (DMSO) and aceto-
nitrile (CH3CN). The solvation model employed was PCM
(Polarizable Continuum Model) [56]. The various Pople’s ba-
sis sets [72, 73] like 6-31G(d), 6-311G(d), 6-31+G(d), 6-
311+G(d), 6-31++G(d), 6-311++G(d), 6-31G(d,p), 6-
311G(d,p), 6-31+G(d,p), 6-311+G(d,p), 6-31++G(d,p), 6-
311++G(d,p), 6-31G(2d,p), 6-311G(2d,p), 6-31+G(2d,p), 6-
311+G(2d,p), 6-31++G(2d,p) and 6-311++G(2d,p) were
used. The optimized structures were confirmed to be the local
minima on potential energy surface by vibrational analysis
and they show no imaginary frequencies. The emission ener-
gies were calculated using relaxed excited state geometry. All
the computations were performed using the Gaussian 09 pack-
age [74] running on GridChem [75, 76].

Result and Discussion

The geometry at the ground and excited states plays an impor-
tant role in the photophysical behaviour of the organic mole-
cules. The geometry optimization was performed using differ-
ent functionals and basis sets and the energies of the molecules
were estimated. The effect of the functionals on the estimated
energies of the molecule were studied and are presented in
Fig. 3 (Additional data provided in the Electronic
supplementary material). The hybrid functionals B3LYP and

CAM-B3LYP compute the lower energies, compared to other
functionals. The M06 functional computes energy closer to
CAM-B3LYP and lower than PBE0. The HF calculates higher
electronic energy of the molecules.

The energy of the molecules also depends on the solvents
used and has different stabilization energy in different solvents
(SI Table 7). The solvent environment stabilizes the molecular
geometry. The extent of the stabilization depends on the po-
larity of solvent. The gas phase molecular energy was taken as
reference and the solvent stabilization energies were calculat-
ed (Table 1). The stabilization energies using HF level of
theory were calculated to be larger compared to the other
methods, whereas the calculated values from the other func-
tionals are close (~0.2–0.6 kcal/mol) to each other (Fig. 4).

The effect of basis set on calculating molecular energies
was studied with various basis sets. The improvement in the
molecular energy was monitored as a function of change in
basis set. The variation in basis sets were made based on the
double zeta, triple zeta basis sets with polarization and dif-
fused functions. Various combinations available in the
Pople’s basis set were applied. There was a variation found
based on the nature of the basis sets. The improvement in the
calculation is achieved by mixing the triple zeta basis set with
polarization on heavy atoms and diffused functions. The triple
zeta 6-311G basis set predicted lower values of energy than

Fig. 7 Angle (Degree) of pyramidalization
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Fig. 8 Dielectric constant dependent angle of pyramidalization
calculated for RC1

Fig. 9 FMO diagram for compound RC1, RC2 and RC3 in DMSO

Table 3 Absorption and emission of compound RC1, RC2 and RC3
in various solvents*

DMSO CH3CN CHCl3

λabs λems λabs λems λabs λems

RC1 640 689 630 677 631 660

RC2 570 607 565 603 – –

RC3 673 715 663 704 – –

All the values expressed in nm

*Data from the literature [45]

1120 J Fluoresc (2015) 25:1117–1126



the 6-31G basis set. The performance of the basis set is given
as a representative example withRC2 using the B3LYP func-
tional. Though the DFT method is known to be less basis set
dependent, here in case of these molecules the triple zeta basis
set computed lower energies. Further addition of polarization
and diffused functions does not have a linear effect on the
energy values (Additional data is provided in Electronic
supplementary material) (Fig. 5).

Dipole Moments

The trends in dipole moments calculated for the molecules are
shown in Fig. 6. The trend shows that the dipole moments are
solvent dependent and it is the highest for RC2 molecule
where–CN group is not found at 4 position. In case of RC3
the –CN group has compensated for the dipole moment
change occurred due to addition of a polar sulphonyl benzoic
acid. The dipole moment ofRC1 remains in the range of 7.58
D to 12.60 D due to the lack of sulphonyl benzoic acid group.
The dipole moments for the molecules RC2 and RC3 are in
the range of 12.13 D to 24.77D in the solvents.

Ground State Geometry

The strength as well as positioning of the donor and acceptor
groups contribute to the various properties of the chromo/

fluorophores. We optimized the structures with the help of
the analytic gradient available at the ground state of the mol-
ecule. The diethylamino group is a common donor for all the
three molecules and calculations reveal that the strength of the
group varies depending upon the solvents. This has translated
to the angle of pyramidalization. Pyramidalization is accom-
panied by the deviation from planarity of the three atoms
attached to nitrogen (180-φ C1-N2-C3-C4). Smaller the val-
ue, more the donor is in-plane and available for the interaction
with the chromophoric system. The angle of pyramidalization
has decreased from non-polar to polar solvents and this im-
plies that the planarity and consequently the donor strength of
diethylamino group increases. The different functionals and
the angles of pyramidalization are given in Table 2. The HF/6-
311++G(2d,p) method shows lowest pyramidalization angles,
but there is no clear trend among the functionals. All the
values indicate that good planarity is achieved in polar sol-
vents as compared to non-polar solvents. Among RC1, RC2
and RC3, the molecule RC1 shows highest deviation from
planarity in the donor group (Figs. 7 and 8).

The acceptor is benzimidazole unit and it is in-plane with
the coumarin chromophoric system which is a common ob-
servation for all the three molecules. The other acceptor is
cyano (−CN) and remains in the same plane due to linear
geometry around carbon atom of cyano group and aromatic
(sp2 hybrid) carbon atom of coumarin.
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methods on the computation of
vertical excitations of RC3

Fig. 11 Absolute deviation using
various functional/method and
basis sets in computing the verti-
cal excitations for RC1 in DMSO
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The frontier molecular orbital diagram of the molecules
RC1, RC2 and RC3 indicates that –CN group at 4-position
has a great impact on the absorption and emission properties
of the molecule. The electron density on –CN group at LUMO
level is clearly seen. Molecule RC1, though does not have
sulphonamide group which is an acceptor, absorbs at a longer
wavelength than the molecule RC2. The sulphonyl benzoic
acid group does not remain in-plane with the chromophoric
system and thus does not contribute towards the LUMO mo-
lecular orbital (see Fig. 9).

Vertical Excitations

The experimental data for vertical excitations of RC1, RC2
and RC3 is tabulated in the Table 3. There is a positive
solvatochromism exhibited by these molecules. The same
solvatochromic behaviour is predicted by all the computation-
al methods. The oscillator strengths and orbital contributions
were also estimated. Interestingly in all the compounds, the
contributing transition for the absorption is HOMO→LUMO
(RC1: 106→107, RC2: 147 →148, RC3: 153→154). The
oscillator strengths were also calculated and found to be de-
pendent on the functional and are less sensitive to the basis set
used (See Electronic supplementary material).

The vertical excitations for RC1, RC2 and RC3 were cal-
culated with the various basis sets and functionals to assess
their utility. There is a clear trend in calculating the vertical
excitations among the functionals. The order of the variation is
HF > CAM-B3LYP > M06 > PBE0 > B3LYP, where HF has
deviated most from the experimental values. Though the
B3LYP and PBE0 functionals perform better, CAM-B3LYP
which is a hybrid functional is found to be less appropriate.
M06 functional, on the other hand, perform better than the HF
and CAM-B3LYP (Fig. 10).

To understand the overall trend in the performance of the
functionals in computing the vertical excitations energies of
the molecules the data was statistically analysed. Figure 11
shows the performance of the various functionals and HF
method and basis sets in calculating the vertical excitations
of compound RC1 in DMSO in terms of absolute deviation.

The B3LYP functional performs best with an absolute devia-
tion of less than 0.2 eV. The vertical excitation value comput-
ed with HF method deviates by more than 1.2 eV, whereas the
PBE0 and M06 functionals shown deviation of 0.3 eV from
the experimental value (Table 4).

The mean absolute error ranges from 0.15 to 1.24 eV. The
mean absolute deviation (MAD) values vary with the solvent
used. The MAD for acetonitrile is lower than the DMSO con-
sistently using all the functionals and this may be due to the
limitation of PCM (Polarizable Continuum Model) to define
the solvent environment of DMSO as compared to the aceto-
nitrile solvent. B3LYP functional has shown the least values
of MAD and qualifies as the best among the other functionals
studied.

The mean signed difference (MSD) or mean signed error
(MSE), is a sample statistic that summarises the accuracy of
the predicted value with a value to be estimated. It is one of a
number of statistics that can be used to assess an estimation
procedure. Here the MSE for B3LYP, M06 and PBE0 remains
well below 0.12 eV. Only exceptions are for CAM-B3LYP
and HF methods. Out of which CAM-B3LYP gives the
highest MSE below 0.30 eVand HF method gives a value of
1.13 to 1.54 eV (see Fig. 12).

Table 4 Mean absolute deviation in HF and various functional (in eV)

PBE0 M06 HF CAM-B3LYP B3LYP

RC1-CH3CN 0.25 0.26 1.21 0.51 0.17

RC2-CH3CN 0.32 0.33 1.22 0.54 0.23

RC3-CH3CN 0.23 0.25 1.06 0.46 0.15

RC1-DMSO 0.26 0.28 1.22 0.52 0.19

RC2-DMSO 0.33 0.34 1.22 0.55 0.23

RC3-DMSO 0.25 0.26 1.07 0.47 0.16

RC1-CHCl3 0.27 0.28 1.24 0.54 0.19
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Fig. 12 Mean signed error in computation of the vertical excitations with
HF method and various functionals

Table 5 Root mean squared (RMS) error in computing vertical excita-
tions with HF method and different functionals (in eV)

PBE0 M06 HF CAM-B3LYP B3LYP

RC1-CH3CN 0.25 0.26 1.21 0.51 0.17

RC2-CH3CN 0.32 0.33 1.22 0.54 0.23

RC3-CH3CN 0.23 0.25 1.06 0.46 0.15

RC1-DMSO 0.27 0.28 1.22 0.52 0.19

RC2-DMSO 0.33 0.34 1.22 0.55 0.23

RC3-DMSO 0.25 0.26 1.07 0.48 0.17

RC1-CHCl3 0.27 0.28 1.24 0.54 0.19
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Root mean squared error (RMS) is the difference between
the values predicted by a model and the values actually ob-
served. The RMS error represents the sample standard devia-
tion of the differences between the predicted values and the
observed values. In this case, the deviation for B3LYP func-
tional was found to be the lowest and the highest for HF
method. The HF method predicts the vertical excitations with
a very large difference, 8 to 10 times more than the B3LYP
functional (Table 5).

Effect of Basis Set on Vertical Excitation

The vertical excitation energies have been computed to be
higher than the experimentally observed values by all the
functionals and basis sets. The different basis sets studied
has shown that there is only factor which has added to the
computation having closer vertical excitation value i.e., addi-
tion of polarization function to the basis set. However, no
improvement is observed when polarization is extended to
the lighter atoms during computations i.e., to the H atom in
molecule. The computation of vertical excitation was not im-
proved by the addition of diffused functions as well as extend-
ing the basis sets from double zeta to triple zeta type of basis
sets (Fig. 13).

Emission Computations

The emission energies were calculated taking the relaxed ex-
cited state geometry, and calculating the ground state vertical
excitation energy for that structure. From the calculations of
the vertical excitation, it is understood that the basis set has a
little effect on the accuracy of results. The vertical excitation
energies are more functional dependent and do not depend on
the basis sets. Considering these, the emission energies were
calculated at the minimal basis set i.e., 6-31G(d), which also
saves a large amount of computational time. The results of the
calculations are given in Table 6. The order of accuracy of the
prediction of emission is B3LYP < PBE0 < M06 < CAM-
B3LYP < HF. The absolute deviation for B3LYP functional
was found 0.06 to 0.18 eV. The PBE0 and M06 functionals
predict the values with deviation of 0.17 to 0.30 eV. The
CAM-B3LYP functional being intermediately accurate with
deviation in the range of 0.40 to 0.56 eV, whereas HF method
was found to be least accurate with deviations of 0.80 to
1.22 eV. The emission calculations with various functionals
highlight the utility of the B3LYP functional to compute the
emission energies of such kind of molecules. In the literature,
the B3LYP functional has been successfully employed for
estimating the vertical excitations of coumarin dye molecules
[77, 78].

Conclusions

The optimized geometry for all the three molecules reveals
that the donor group (N,N-diethylamino) is in-plane with the
chromophoric system and helps in introducing a better conju-
gation in the system. The FMOs shows utility of presence of –
CN group and non-participation of sulphonyl benzoic acid
group in the photophysical behaviour of the molecule.

A careful analysis of the data computed with the chosen
functionals and basis set reveals that the B3LYP functional
predicts the lowest molecular energies in the gas phase as well

Table 6 Observed and calculated emission energies for RC1, RC2 and RC3 in various solvents (in eV)

Observed B3LYP PBE0 M06 CAM-B3LYP HF

Calc. Diff. Calc. Diff. Calc. Diff. Calc. Diff. Calc. Diff.

RC1-CH3CN 1.83 1.99 −0.16 2.06 −0.22 2.05 −0.22 2.24 −0.40 2.71 −0.88
RC1-DMSO 1.80 1.97 −0.17 2.04 −0.24 2.03 −0.23 2.22 −0.42 2.70 −0.89
RC1-CHCl3 1.88 1.99 −0.11 2.06 −0.18 2.05 −0.17 2.23 −0.36 2.68 −0.80
RC2-CH3CN 2.06 2.24 −0.18 2.35 −0.29 2.36 −0.30 2.62 −0.56 3.29 −1.23
RC2-DMSO 2.04 2.23 −0.18 2.34 −0.30 2.35 −0.30 2.60 −0.56 3.27 −1.22
RC3-CH3CN 1.76 1.82 −0.06 1.99 −0.23 1.97 −0.21 2.17 −0.40 2.85 −1.09
RC3-DMSO 1.73 1.81 −0.08 1.99 −0.25 1.97 −0.24 2.15 −0.42 2.85 −1.12

Fig. 13 Effect of basis sets on vertical excitation computations using
B3LYP functional for RC1 in CH3CN
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as in the solution phase. The order of lower energy prediction
is B3LYP <CAM-B3LYP <M06 < PBE0 <HF, where the HF
method predicts highest energy value. The molecular energies
calculated using triple zeta (6–311) basis set are lower than
when calculated with double zeta 6–31 basis sets. This indi-
cates the improvement of the results when triple zeta (6–311)
basis set is used over double zeta (6–31) basis set.

But when it comes to the computations of the vertical ex-
citation energies the trend is B3LYP < PBE0 < M06 < CAM-
B3LYP < HF. The absolute deviation for the B3LYP function-
al was found ~0.20 eV and is the most suitable functional to
compute vertical excitation energies of these kind of mole-
cules. The basis sets reveal that the adding the polarization
function to the basis set improved the computations of vertical
excitations but diffused functions did not improve the results.
The statistical treatment to the data proves that the B3LYP
functional is most suitable for computing vertical excitations
and emission calculation.
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